Menu
Home
Downloads
Features
Tutorial
F.A.Q
License
Contact

Introduction

Wykobi is a lightweight and simple to use C++ Computational Geometry Library. The library focuses primarily on 2D and 3D based geometric problems, though it does have support for some N-D versions of those same problems. The following contains a more extensive listing of all the available features

Wykobi as a library can be used to efficiently and seamlessly solve geometric problems such as collision and proximity detection, efficient spatial queries and geometric constructions used in areas as diverse as gaming, Computer Aided Design and manufacture, Electronic Design and Geographic Information Systems - just to name a few.



The Wykobi Data Structures

Wykobi provides a series of primitive geometric structures for use within the various algorithms of interest such as intersections, distances, inclusions and clipping operations. The following is a list of the supported primitives:


The Point Type

Basic point types, which are zero dimensional entities that exist in either 2D, 3D or n-dimensions.

template <typename T = Float>
class point2d : public geometric_entity {};

template <typename T = Float>
class point3d : public geometric_entity {};

template <typename T = Float, std::size_t Dimension>
class pointnd : public geometric_entity {};
     

The Line Type

Line type, which is a 1 dimensional entity of infinite length that is described by two points within its present dimension.

C++ Wykobi Computational Geometry Library Line Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class line : public geometric_entity {};
     

The Segment (Line-Segment) Type

Segment type, similar to the line type, but is of finite length bounded by the two points which describe it within its present dimension.

C++ Wykobi Computational Geometry Library Line Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class segment : public geometric_entity {};
     

The Ray Type

Ray type, A directed half-infinite line or half-line. A ray has an origin point and a vector that describes the direction in which all the points that are members of the set of points that make up the ray exist upon.

C++ Wykobi Computational Geometry Library Ray Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class ray : public geometric_entity {};
     

The Triangle Type

Triangle type, A geometric primitive that is comprised of 3 unique points, which produce 3 unique edges.

C++ Wykobi Computational Geometry Library Triangle Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class triangle : public geometric_entity {};
     

The Rectangle Type

Rectangle type, An axis aligned 4 sided geometric primitive, described by two bounding points in 2D. A rectangle's form in 3D and higher dimensions is a box.

C++ Wykobi Computational Geometry Library Rectangle Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class rectangle : public geometric_entity {};
     

The Quadix (Quadrilateral) Type

Quadix type, A convex quadrilateral or polygon that comprises of 4 unique points which produce 4 unique edges. In the 3D and higher dimensions sense all 4 points have to be coplanar.

C++ Wykobi Computational Geometry Library Quadrilateral Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class quadix : public geometric_entity {};
     

The Polygon Type

Polygon type, A set of closed sequentially connected coplanar points.

C++ Wykobi Computational Geometry Library Polygon Definition - Copyright Arash Partow

template <typename T = Float, std::size_t Dimension>
class polygon : public geometric_entity {};
     

The polygon type in Wykobi supports only a limited set of possible polygon types. As such the following polygon traits and features are not supported:

Using the code

There are many different things that can be done with the Wykobi Computational Geometry Library. The following are some of the slightly more interesting capabilities...



Calculating A Convex Hull

The convex hull of a set of points, is the subset of points from the original set that comprise the smallest possible convex shaped polygon or polytope which bounds all the points in the original set.

Many different techniques exist for calculating the convex hull of a set of points. Various methods such as the Melkman algorithm rely on special properties of the points. Complexities for calculating the convex hull range from naive algorithms which have a complexity of O(N3) to more specialised algorithms such Graham scan and Melkman that have complexities of O(nlogn) and O(n) respectively.

Convex Hull - Graham Scan (Complexity O(nlogn))

C++ Wykobi Computational Geometry Library Graham Scan Convex Hull - Copyright Arash Partow

const std::size_t max_points = 100000;

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points<T>
        (
          0.0, 0.0, width, height,
          max_points,
          std::back_inserter(point_list)
        );

wykobi::polygon<T,2> convex_hull;

wykobi::algorithm::convex_hull_graham_scan<wykobi::point2d<T>>
                  (
                    point_list.begin(),
                    point_list.end(),
                    std::back_inserter(convex_hull)
                  );

     

Convex Hull - Jarvis March (Complexity O(nh))

The Jarvis march algorithm is also known as the gift-wrapping algorithm. It can be naturally extended to higher dimensions.

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(width,height,polygon);

std::vector<wykobi::point2d<T>> convex_hull;

wykobi::algorithm::convex_hull_jarvis_march<wykobi::point2d<T>>
                   (
                     polygon.begin(),
                     polygon.end(),
                     std::back_inserter(convex_hull)
                   );

wykobi::polygon<T,2> convex_hull_polygon = wykobi::make_polygon<T>(convex_hull);
     

Convex Hull - Melkman (Complexity O(n))

The Melkman algorithm achieves a complexity of O(n) by assuming that the points in the set are ordered such that they represent a concave non-selfintersecting polygon or polyline.

C++ Wykobi Computational Geometry Library Melkman Convex Hull - Copyright Arash Partow

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(width,height,polygon);

std::vector<wykobi::point2d<T>> convex_hull;

wykobi::algorithm::convex_hull_melkman<wykobi::point2d<T>>
                   (
                     polygon.begin(),
                     polygon.end(),
                     std::back_inserter(convex_hull)
                   );

wykobi::polygon<T,2> convex_hull_polygon = wykobi::make_polygon<T>(convex_hull);
     


Calculating A Minimal Bounding Ball

Given a set of N k-dimensional points, the minimal bounding ball is the smallest circle, sphere or hypersphere that contains all the points. This problem is sometimes called the smallest enclosing circle or the smallest enclosing disk where by the points in contention must all be coplanar to each other.

C++ Wykobi Computational Geometry Library Minimal Bounding Ball - Copyright Arash Partow

Minimal Bounding Ball - Randomized Algorithm

The randomized algorithm is a stable algorithm which is used to solve the minimal bounding ball problem for 2D with a space and time complexity O(n).

const std::size_t max_points = 100000;

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points<T>
        (
          0.0, 0.0, width, height,
          max_points,
          std::back_inserter(point_list)
        );

wykobi::circle<T> minimum_bounding_ball;

wykobi::algorithm::randomized_minimum_bounding_ball<wykobi::point2d<T>>
                   (
                     point_list.begin(),
                     point_list.end(),
                     minimum_bounding_ball
                   );
     

Minimal Bounding Ball - Ritter Algorithm

An approximation algorithm devised by Jack Ritter [ritter 1990]. It has a complexity of O(n), can be easily extended to higher dimensions yet does not guarantee an optimal minimal bounding ball, but rather a very close approximate.

const std::size_t max_points = 100000;

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points<T>
        (
          0.0, 0.0, width, height,
          max_points,
          std::back_inserter(point_list)
        );

wykobi::circle<T> minimum_bounding_ball;

wykobi::algorithm::ritter_minimum_bounding_ball<wykobi::point2d<T>>
                   (
                     point_list.begin(),
                     point_list.end(),
                     minimum_bounding_ball
                   );
     

Minimal Bounding Ball - Naive Algorithm (O(N4))

const std::size_t max_points = 100000;

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points<T>
        (
          0.0, 0.0, width, height,
          max_points,
          std::back_inserter(point_list)
        );

wykobi::circle<T> minimum_bounding_ball;

wykobi::algorithm::naive_minimum_bounding_ball<wykobi::point2d<T>>
                   (
                     point_list.begin(),
                     point_list.end(),
                     minimum_bounding_ball
                   );
     

Note: All the 2D minimal bounding ball algorithms have been extended to perform a convex hull filter operation before calculating the bounding ball.

Though obtaining the convex hull is not of linear complexity, the resulting points from the hull guarantee a somewhat better result with regards to the optimal minimal bounding ball when considering the ritter algorithm, When considering the naive algorithm there is a large linear scaling down of computing time though not of the complexity, and finally when considering the random algorithm if the point set is large enough, preprocessing the set by computing its convex hull decreases (through a constant multiplier to its complexity) the computing time that is incurred during the randomized rotation process carried out in each step - essentially in all cases the less points there are the more efficient the algorithms become.

wykobi::algorithm::randomized_minimum_bounding_ball_with_ch_filter<wykobi::point2d<T>>
                   (
                     point_list.begin(),
                     point_list.end(),
                     minimum_bounding_ball
                   );

wykobi::algorithm::ritter_minimum_bounding_ball_with_ch_filter<wykobi::point2d<T>>
                   (
                     point_list.begin(),
                     point_list.end(),
                     minimum_bounding_ball
                   );

wykobi::algorithm::naive_minimum_bounding_ball_with_ch_filter<wykobi::point2d<T>>
                   (
                     point_list.begin(),
                     point_list.end(),
                     minimum_bounding_ball
                   );
     


Sutherland Hodgman Polygon Clipping

Clipping one object or more precisely a polygon or polytope against another is essentially the process of computing the intersecting area or volume between the pair of objects. Depending on the structural nature of the objects such as convexity and disjointness, the resulting clipped object may itself be disjoint or may contain islands and other interesting properties.

The Sutherland Hodgman polygon clipping algorithm is a simplified clipping algorithm with the constraint that the clip boundary be convex where as the other object may be a concave non-self intersecting polygon.

Concave Polygon Clipped Against A Rectangle

C++ Wykobi Computational Geometry Library Polygon-Rectangle Clipping - Copyright Arash Partow

wykobi::rectangle<T> clip_boundry;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, clip_boundry);

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(width,height,polygon);

wykobi::polygon<T,2> clipped_polygon;

wykobi::algorithm::sutherland_hodgman_polygon_clipper<wykobi::point2d<T>>
                   (clip_boundry, polygon, clipped_polygon);
     

Concave Polygon Clipped Against A 2D Triangle

C++ Wykobi Computational Geometry Library Polygon-Triangle Clipping - Copyright Arash Partow

wykobi::triangle<T> clip_boundry;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, clip_boundry);

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(width,height,polygon);

wykobi::polygon<T,2> clipped_polygon;

wykobi::algorithm::sutherland_hodgman_polygon_clipper<wykobi::point2d<T>>
                   (clip_boundry, polygon, clipped_polygon);
     

Concave Polygon Clipped Against A 2D Quadix

C++ Wykobi Computational Geometry Library Polygon-Quadix Clipping - Copyright Arash Partow

wykobi::quadix<T> clip_boundry;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, clip_boundry);

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(width,height,polygon);

wykobi::polygon<T,2> clipped_polygon;

wykobi::algorithm::sutherland_hodgman_polygon_clipper<wykobi::point2d<T>>
                   (clip_boundry, polygon, clipped_polygon);
     

Concave Polygon Clipped Against A 2D Convex Polygon

C++ Wykobi Computational Geometry Library Polygon-Polygon Clipping - Copyright Arash Partow

wykobi::circle<T> circle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, circle);

wykobi::polygon<T,2> clip_boundry = wykobi::make_polygon<T>(circle,12);

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, circle);

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(width,height,polygon);

wykobi::polygon<T,2> clipped_polygon;

wykobi::algorithm::sutherland_hodgman_polygon_clipper<wykobi::point2d<T>>
                   (clip_boundry, polygon, clipped_polygon);
     


Cohen-Sutherland Line Segment Clipping

Line Segments Clipped Against An 2D Axis Aligned Bounding Box

C++ Wykobi Computational Geometry Library Segments-Rectangle Clip - Copyright Arash Partow

const std::size_t max_segments = 100;

std::vector<wykobi::segment<T,2>> segment_list;

for (std::size_t i = 0; i < max_segments; ++i)
{
   wykobi::segment<T,2> tmp_segment;

   wykobi::generate_random_object(0.0, 0.0, width, height, tmp_segment);

   segment_list.push_back(tmp_segment);
}

wykobi::rectangle<T> rectangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, rectangle);

std::vector<wykobi::segment<T,2>> clipped_segment_list;

for (std::size_t i = 0; i < segment_list.size(); ++i)
{
   wykobi::segment<T,2> clipped_segment;

   if (wykobi::clip(segment_list[i], rectangle, clipped_segment))
   {
      clipped_segment_list.push_back(clipped_segment);
   }
}
     

Line Segments Clipped Against A 2D Triangle

C++ Wykobi Computational Geometry Library Segments-Triangle Clip - Copyright Arash Partow

const std::size_t max_segments = 100;

std::vector<wykobi::segment<T,2>> segment_list;

for (std::size_t i = 0; i < max_segments; ++i)
{
   wykobi::segment<T,2> tmp_segment;

   wykobi::generate_random_object(0.0, 0.0, width, height, tmp_segment);

   segment_list.push_back(tmp_segment);
}

wykobi::triangle<T,2> triangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, triangle);

std::vector<wykobi::segment<T,2>> clipped_segment_list;

for (std::size_t i = 0; i < segment_list.size(); ++i)
{
   wykobi::segment<T,2> clipped_segment;

   if (wykobi::clip(segment_list[i], triangle, clipped_segment))
   {
      clipped_segment_list.push_back(clipped_segment);
   }
}
     

Line Segments Clipped Against A 2D Quadix

C++ Wykobi Computational Geometry Library Segments-Quadix Clip - Copyright Arash Partow

const std::size_t max_segments = 100;

std::vector<wykobi::segment<T,2>> segment_list;

for (std::size_t i = 0; i < max_segments; ++i)
{
   wykobi::segment<T,2> tmp_segment;

   wykobi::generate_random_object(0.0, 0.0, width, height, tmp_segment);

   segment_list.push_back(tmp_segment);
}

wykobi::quadix<T,2> quadix;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, quadix);

std::vector<wykobi::segment<T,2>> clipped_segment_list;

for (std::size_t i = 0; i < segment_list.size(); ++i)
{
   wykobi::segment<T,2> clipped_segment;

   if (wykobi::clip(segment_list[i], quadix, clipped_segment))
   {
      clipped_segment_list.push_back(clipped_segment);
   }
}
     

Line Segments Clipped Against A Circle

C++ Wykobi Computational Geometry Library Segments-Circle Clip - Copyright Arash Partow

const std::size_t max_segments = 100;

std::vector<wykobi::segment<T,2>> segment_list;

for (std::size_t i = 0; i < max_segments; ++i)
{
   wykobi::segment<T,2> tmp_segment;

   wykobi::generate_random_object(0.0, 0.0, width, height, tmp_segment);

   segment_list.push_back(tmp_segment);
}

wykobi::circle<T> circle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, circle);

std::vector<wykobi::segment<T,2>> clipped_segment_list;

for (std::size_t i = 0; i < segment_list.size(); ++i)
{
   wykobi::segment<T,2> clipped_segment;

   if (wykobi::clip(segment_list[i], circle, clipped_segment))
   {
      clipped_segment_list.push_back(clipped_segment);
   }
}
     

Rectangles Clipped Against A Rectangle

C++ Wykobi Computational Geometry Library Rectangles-Rectangle Clip - Copyright Arash Partow

const std::size_t max_rectangles = 10;

std::vector<wykobi::rectangle<T>> rectangle_list;

for (std::size_t i = 0; i < max_rectangles; ++i)
{
   wykobi::rectangle<T> tmp_rectangle;

   wykobi::generate_random_object(0.0,0.0,width,height,tmp_rectangle);

   rectangle_list.push_back(tmp_rectangle);
}

wykobi::rectangle<T> clip_rectangle;

wykobi::generate_random_object<T>(0.0, 0.0, 1000.0, 1000.0, clip_rectangle);

std::vector<wykobi::rectangle<T>> clipped_rectangle_list;

for (std::size_t i = 0; i < rectangle_list.size(); ++i)
{
   wykobi::rectangle<T> clipped_rectangle;

   if (wykobi::clip(rectangle_list[i], clip_rectangle, clipped_rectangle))
   {
      clipped_rectangle_list.push_back(clipped_rectangle);
   }
}
     


Group Based Pairwise Intersections

Segment To Segment Intersections

C++ Wykobi Computational Geometry Library Segment To Segment Intersections - Copyright Arash Partow

const std::size_t max_segments = 100;

std::vector<wykobi::segment<T,2>> segment_list;

for (std::size_t i = 0; i < max_segments; ++i)
{
   wykobi::segment<T,2> tmp_segment;

   wykobi::generate_random_object(0.0, 0.0, width, height, tmp_segment);

   segment_list.push_back(tmp_segment);
}

std::vector<wykobi::point2d<T>> intersection_list;

wykobi::algorithm::naive_group_intersections<segment<T,2>>
                   (
                     segment_list.begin(),
                     segment_list.end(),
                     std::back_inserter(intersection_list)
                   );
     

Circle To Circle (Disk) Intersections

C++ Wykobi Computational Geometry Library Circle To Circle Intersections - Copyright Arash Partow

const std::size_t max_circles = 100;

std::vector<wykobi::circle<T>> circle_list;

for (std::size_t i = 0; i < max_circles; ++i)
{
   wykobi::circle<T> tmp_circle;

   wykobi::generate_random_object(0.0, 0.0, width, height, tmp_circle);

   circle_list.push_back(tmp_circle);
}

std::vector<wykobi::point2d<T>> intersection_list;

wykobi::algorithm::naive_group_intersections<circle<T>>
                   (
                     circle_list.begin(),
                     circle_list.end(),
                     std::back_inserter(intersection_list)
                   );
     

There are three primary modes of circle-to-circle boundary intersections. These range from no intersection points up to two intersection points. Lets assume D is the distance between the centers C0 and C1, then the modes can be described in terms of inequalities between the radii of circles (R0, R1) and D.

The following diagram illustrates the various intersection modes:

C++ Wykobi Computational Geometry Library Circle To Circle Intersections Modes - Copyright Arash Partow

The following diagram is a breakdown of all the points and segments of interest when determining the intersection points between two circles where the distance between the centers is less than the sum and greater than the difference of the radii:

C++ Wykobi Computational Geometry Library Circle To Circle Intersections Modes - Copyright Arash Partow

In order to determine the intersection points I0 and I1, we need to first determine the location of point P. Which can be calculated in terms of a unit vector v along the path C0 to C1 scaled by the length d0 originating from C0. Using the identities on the left, we then derive the value of d0 using the process described on the right:

C++ Wykobi Computational Geometry Library Circle To Circle Intersections Modes - Copyright Arash Partow

Now that we have a computable form for the length d0, we can proceed to derive the point P and from there determine the intersection points I0 and I1 as being the composition of P and the perpendicular vector to v scaled by the length k:

C++ Wykobi Computational Geometry Library Circle To Circle Intersections Modes - Copyright Arash Partow



Simple Polygon Triangulation (Ear-Clipping Algorithm)

C++ Wykobi Computational Geometry Library Polygon Triangulation Via Ear Clipping 1 - Copyright Arash Partow

wykobi::polygon<T,2> polygon;

polygon.push_back(wykobi::make_point<T>( 25.0, 191.0));
polygon.push_back(wykobi::make_point<T>( 55.0, 191.0));
polygon.push_back(wykobi::make_point<T>( 52.0, 146.0));
polygon.push_back(wykobi::make_point<T>( 98.0, 134.0));
polygon.push_back(wykobi::make_point<T>(137.0, 200.0));
polygon.push_back(wykobi::make_point<T>(157.0, 163.0));
polygon.push_back(wykobi::make_point<T>(251.0, 188.0));
polygon.push_back(wykobi::make_point<T>(151.0, 138.0));
polygon.push_back(wykobi::make_point<T>(164.0, 116.0));
polygon.push_back(wykobi::make_point<T>(125.0, 141.0));
polygon.push_back(wykobi::make_point<T>( 78.0,  99.0));
polygon.push_back(wykobi::make_point<T>( 29.0, 139.0));

std::vector<wykobi::triangle<T,2>> triangle_list;

wykobi::algorithm::polygon_triangulate<wykobi::point2d<T>>
                   (polygon, std::back_inserter(triangle_list));
     

C++ Wykobi Computational Geometry Library Polygon Triangulation Via Ear Clipping 2 - Copyright Arash Partow

wykobi::polygon<T,2> polygon =
                     wykobi::make_polygon(wykobi::make_circle<T>(0.0, 0.0, 100.0),10);

std::vector<wykobi::triangle<T,2>> triangle_list;

wykobi::algorithm::polygon_triangulate<wykobi::point2d<T>>
                   (polygon, std::back_inserter(triangle_list));
     

C++ Wykobi Computational Geometry Library Polygon Triangulation Via Ear Clipping 3 - Copyright Arash Partow

wykobi::polygon<T,2> polygon;

generate_polygon_type1<T>(width, height, polygon);  // generate simple complex polygon

std::vector triangle_list;

wykobi::algorithm::polygon_triangulate<wykobi::point2d<T>>
                   (polygon, std::back_inserter(triangle_list));
     


Calculating The Axis Projection Descriptor

In the book flatland and subsequent flatterland, the flatlanders would query an object's boundary to determine its identity, similar objects would have similar boundaries. The projection of a 2D object onto various axises produces a view of that object on those axises. The combinations of views are somewhat unique to that object and using various normalization methods and difference metrics can be used to define, in a somewhat invariant to rotation and scaling manner, how different or how similar one 2D object is from another. The descriptor works best with convex shapes. When comparing concave shapes, due to the possibility that edges may occlude others, a definitive differencing metric is difficult to realize. The concepts used in calculating the descriptor are very similar to the concepts used in the separating axis theorem.

C++ Wykobi Computational Geometry Library Axis Projection Descriptor - Copyright Arash Partow

wykobi::quadix<T,2> quadix;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, quadix);

wykobi::polygon<T,2> polygon = wykobi::make_polygon(quadix);

std::vector<T> descriptor;

wykobi::algorithm::generate_axis_projection_descriptor<T>
                   (wykobi::polygon, std::back_inserter(descriptor));
     

The 3D form of the axis projection descriptor involves projecting a voluminous object on various planes. The areas of the projections as in the 2D sense are normalized producing a histogram covering the planes. A differencing metric such as the Bhattacharya distance can then be used to efficiently determine relative equivalency between two or more objects.



Beziers And Splines

Random 2D Quadratic Beziers

C++ Wykobi Computational Geometry Library Random 2D Quadratic Beziers - Copyright Arash Partow

const std::size_t bezier_count = 15;
const std::size_t resolution   = 1000;

std::vector<wykobi::quadratic_bezier<T,2>> bezier_list;

for (std::size_t i = 0; i < bezier_count; ++i)
{
   wykobi::quadratic_bezier<T,2> bezier;

   bezier[0] = wykobi::generate_random_point<T>(width, height);
   bezier[1] = wykobi::generate_random_point<T>(width, height);
   bezier[2] = wykobi::generate_random_point<T>(width, height);

   bezier_list.push_back(bezier)
}

for (std::size_t i = 0; i < bezier_list.size(); ++i)
{
   std::vector<point2d<T>> point_list;

   wykobi::generate_bezier(bezier_list[i], resolution, point_list);

   draw_polyline(point_list);
}
     

Random 2D Cubic Beziers

C++ Wykobi Computational Geometry Library Random 2D Cubic Beziers - Copyright Arash Partow

const std::size_t bezier_count = 15;
const std::size_t resolution   = 1000;

std::vector<wykobi::cubic_bezier<T,2>> bezier_list;

for (std::size_t i = 0; i < bezier_count; ++i)
{
   wykobi::cubic_bezier<T,2> bezier;

   bezier[0] = wykobi::generate_random_point<T>(width, height);
   bezier[1] = wykobi::generate_random_point<T>(width, height);
   bezier[2] = wykobi::generate_random_point<T>(width, height);
   bezier[3] = wykobi::generate_random_point<T>(width, height);

   bezier_list.push_back(bezier)
}

for (std::size_t i = 0; i < bezier_list.size(); ++i)
{
   std::vector<point2d<T>> point_list;

   wykobi::generate_bezier(bezier_list[i], resolution, point_list);

   draw_polyline(point_list);
}
     

Pairwise Segment To Quadratic Bezier Intersections

Note: The current method uses an iterative approximation approach. The correct method is to use a polynomial root solver to find the quadratic or cubic polynomial roots for every dimension.

C++ Wykobi Computational Geometry Library Pairwise Segment To Quadratic Bezier Intersections - Copyright Arash Partow

const std::size_t bezier_count  = 20;
const std::size_t segment_count = 10;
const std::size_t resolution    = 1000;

std::vector<wykobi::quadratic_bezier<T,2>> bezier_list;
std::vector<wykobi::segment<T,2>> segment_list;

for (std::size_t i = 0; i < bezier_count; ++i)
{
   wykobi::quadratic_bezier<T,2> bezier;

   bezier[0] = wykobi::generate_random_point<T>(width, height);
   bezier[1] = wykobi::generate_random_point<T>(width, height);
   bezier[2] = wykobi::generate_random_point<T>(width, height);

   bezier_list.push_back(bezier)
}

for (std::size_t i = 0; i < segment_count; ++i)
{
   wykobi::segment<T,2>; segment;

   wykobi::generate_random_object<T>(0.0, 0.0, width, height, segment);

   segment_list.push_back(segment);
}

std::vector<wykobi::point2d<T>> intersection_point_list;

for (std::size_t i = 0; i < bezier_list.size(); ++i)
{
   for (std::size_t j = 0; j < segment_list.size(); ++j)
   {
      wykobi::intersection_point
              (segment_list[j], bezier_list[i], intersection_point_list);
   }
}
     

Pairwise Segment To Cubic Bezier Intersections

C++ Wykobi Computational Geometry Library Pairwise Segment To Cubic Bezier Intersections - Copyright Arash Partow

const std::size_t bezier_count  = 20;
const std::size_t segment_count = 10;
const std::size_t resolution    = 1000;

std::vector<wykobi::cubic_bezier<T,2>> bezier_list;
std::vector<wykobi::segment<T,2>>segment_list;

for (std::size_t i = 0; i < bezier_count; ++i)
{
   wykobi::cubic_bezier<T,2> bezier;

   bezier[0] = wykobi::generate_random_point<T>(width, height);
   bezier[1] = wykobi::generate_random_point<T>(width, height);
   bezier[2] = wykobi::generate_random_point<T>(width, height);
   bezier[3] = wykobi::generate_random_point<T>(width, height);

   bezier_list.push_back(bezier)
}

for (std::size_t i = 0; i < segment_count; ++i)
{
   wykobi::segment<T,2> segment;

   wykobi::generate_random_object<T>(0.0, 0.0, width, height, segment);

   segment_list.push_back(segment);
}

std::vector<wykobi::point2d<T>> intersection_point_list;

for (std::size_t i = 0; i < bezier_list.size(); ++i)
{
   for (std::size_t j = 0; j < segment_list.size(); ++j)
   {
      wykobi::intersection_point
              (segment_list[j], bezier_list[i], intersection_point_list);
   }
}
     


Random Points

The routines in this section will attempt to generate uniformly distributed points within the boundries of the following 2D objects:

Random Points In 2D AABB

C++ Wykobi Computational Geometry Library Random Points In 2D AABB - Copyright Arash Partow

const std::size_t max_points = 1000;

wykobi::rectangle<T> rectangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, rectangle);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points(rectangle, max_points, std::back_inserter(point_list));
     

Random Points In 2D Triangle

C++ Wykobi Computational Geometry Library Random Points In 2D Triangle - Copyright Arash Partow

const std::size_t max_points = 1000;

wykobi::triangle<T,2> triangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, triangle);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points(triangle, max_points, std::back_inserter(point_list));
     

Random Points In 2D Quadix

C++ Wykobi Computational Geometry Library Random Points In 2D Quadix - Copyright Arash Partow

const std::size_t max_points = 1000;

wykobi::quadix<T,2> triangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, quadix);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points(quadix, max_points, std::back_inserter(point_list));
     

Random Points In Circle

C++ Wykobi Computational Geometry Library Random Points In Circle - Copyright Arash Partow

const std::size_t max_points = 1000;

wykobi::circle<T> circle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, circle);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points(circle, max_points, std::back_inserter(point_list));
     


Constructions, Triangles And Points Of Interest

Vertex Bisector

C++ Wykobi Computational Geometry Library Vertex Bisector - Copyright Arash Partow

wykobi::point2d<T> point_a = wykobi::make_point(...,...);
wykobi::point2d<T> point_b = wykobi::make_point(...,...);
wykobi::point2d<T> point_c = wykobi::make_point(...,...);

wykobi::line<T,2> bisector_line =
                    wykobi::create_line_from_bisector(point_a, point_b, point_c);
     

Circle Tangent Line Segments

The following defines the tangent lines (or line-segments) between a given circle C and an external point P. Furthermore this calculation is the basis of the Inner and Outer tangent lines routines.

C++ Wykobi Computational Geometry Library Circle Tangent Line Segments - Copyright Arash Partow

wykobi::circle<T> circle = wykobi::make_circle<T>(0.0, 0.0, 100.0);

wykobi::point2d<T> external_point = wykobi::make_point<T>(-1000.0, 1000.0);

wykobi::point2d<T> tangent_point1;
wykobi::point2d<T> tangent_point2;

wykobi::circle_tangent_points(circle, external_point, tangent_point1, tangent_point2);
     

Note: The length of the line segments defined between point P and the tangent points T0 and T1 are equal, let's call this length K. The value of K is equal to: sqrt(r2 + |C - P|2). As such the problem of finding the tangent points on the circle C simplifies to that of finding the points of intersection between two circles centered at points C and P, with radii of R and K respectively.

Circle Inner Tangent Lines

C++ Wykobi Computational Geometry Library Circle Inner Tangent Lines - Copyright Arash Partow

wykobi::circle<T> circle0 = wykobi::make_circle<T>(......);
wykobi::circle<T> circle1 = wykobi::make_circle<T>(......);

std::vector<wykobi::line<T,2>> tangent_lines;

wykobi::circle_internal_tangent_lines(circle0,circle1,tangent_lines);
     

Circle Outer Tangent Lines

C++ Wykobi Computational Geometry Library Circle Outer Tangent Lines - Copyright Arash Partow

wykobi::circle<T> circle0 = wykobi::make_circle<T>(......);
wykobi::circle<T> circle1 = wykobi::make_circle<T>(......);

std::vector<wykobi::line<T,2>> tangent_lines;

wykobi::circle_outer_tangent_lines(circle0,circle1,tangent_lines);
     

Triangle Circumcircle And Inscribed Circle

C++ Wykobi Computational Geometry Library Triangle Circumcircle And Inscribed Circle - Copyright Arash Partow

wykobi::triangle<T,2> triangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, triangle);

wykobi::circle<T> circumcircle = wykobi::circumcircle(triangle);

wykobi::circle<T> inscribed_circle = wykobi::inscribed_circle(triangle);
     

Construction Of Triangle's Excentral Triangle And Excircles

C++ Wykobi Computational Geometry Library Construction Of Triangle Excentral Triangle And Excircles - Copyright Arash Partow

wykobi::triangle<T,2> triangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, triangle);

wykobi::circle<T> excircle1 = wykobi::excircle(triangle,0);
wykobi::circle<T> excircle2 = wykobi::excircle(triangle,1);
wykobi::circle<T> excircle3 = wykobi::excircle(triangle,2);

wykobi::triangle<T,2> excentral_triangle = wykobi::create_excentral_triangle(triangle);
     

Calculation Of The Torricelli Point (Fermat Point)

The Torricelli point, also known as the fermat point, is the point within the triangle constructed from 3 unique points that minimizes the total distance from each of the 3 points to itself.

C++ Wykobi Computational Geometry Library Calculation Of The Torricelli Point - Copyright Arash Partow

wykobi::triangle<T,2> triangle;

wykobi::generate_random_object<T>(0.0, 0.0, width, height, triangle);

wykobi::point2d<T> torricelli_point = wykobi::torricelli_point(triangle);
     

Closest Point On Segment From External Points

C++ Wykobi Computational Geometry Library Closest Point On Segment From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::segment<T,2> segment;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, segment);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          0.0, 0.0, width - 5.0, height - 5.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(segment);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
                   wykobi::closest_point_on_segment_from_point(segment, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point,point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Triangle From External Points

C++ Wykobi Computational Geometry Library Closest Point On Triangle From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::triangle<T,2> triangle;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, triangle);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          0.0, 0.0, width - 5.0, height - 5.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(triangle);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
                   wykobi::closest_point_on_triangle_from_point(triangle, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point,point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Rectangle From External Points

C++ Wykobi Computational Geometry Library Closest Point On Rectangle From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::rectangle<T> rectangle;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, rectangle);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          5.0, 5.0, width - 1.0, height - 1.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(rectangle);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
                 wykobi::closest_point_on_rectangle_from_point(rectangle, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point,point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Quadix From External Points

C++ Wykobi Computational Geometry Library Closest Point On Quadix From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::quadix<T,2> quadix;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, quadix);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          5.0, 5.0, width - 5.0, height - 5.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(quadix);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
               wykobi::closest_point_on_quadix_from_point(quadix, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point, point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Polygon From External Points

C++ Wykobi Computational Geometry Library Closest Point On Polygon From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::polygon<T,2> polygon;

generate_polygon_type2<T>(graphic.width(), graphic.height(), polygon);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          0.0, 0.0, width - 5.0, height - 5.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(segment);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
               wykobi::closest_point_on_polygon_from_point(polygon, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point, point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Circle From External Points

C++ Wykobi Computational Geometry Library Closest Point On Circle From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::circle<T> circle;

wykobi::generate_random_object<T>
        (0.0, 0.0, width - 1.0, height - 1.0, circle);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          5.0, 5.0, width - 5.0, height - 5.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(circle);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
               wykobi::closest_point_on_circle_from_point(circle, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point, point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Quadratic Bezier From External Points

C++ Wykobi Computational Geometry Library Closest Point On Quadratic Bezier From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::quadratic_bezier<T,2> bezier;

bezier[0] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);
bezier[1] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);
bezier[2] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          0.0, 0.0, width - 1.0, height - 1.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(bezier,100);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
               wykobi::closest_point_on_bezier_from_point(bezier, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point, point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Cubic Bezier From External Points

C++ Wykobi Computational Geometry Library Closest Point On Cubic Bezier From External Points - Copyright Arash Partow

const std::size_t max_points = 50;

wykobi::cubic_bezier<T,2> bezier;

bezier[0] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);
bezier[1] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);
bezier[2] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);
bezier[3] = wykobi::generate_random_point<T>(width - 1.0, height - 1.0);

std::vector<wykobi::point2d<T>> point_list;

point_list.reserve(max_points);

wykobi::generate_random_points
        (
          0.0, 0.0, width - 1.0, height - 1.0,
          max_points,
          std::back_inserter(point_list)
        );

graphic.draw(bezier,100);

for (std::size_t i = 0; i < point_list.size(); ++i)
{
   wykobi::point2d<T> closest_point =
               wykobi::closest_point_on_bezier_from_point(bezier, point_list[i]);

   if (wykobi::distance(closest_point,point_list[i]) > T(1.0))
   {
      graphic.draw(wykobi::make_segment(closest_point,point_list[i]));
   }

   graphic.draw_circle(point_list[i],3);
   graphic.draw_circle(closest_point,2);
}
     

Closest Point On Circle From External Segments

C++ Wykobi Computational Geometry Library Closest Point On Circle From External Segments - Copyright Arash Partow

const unsigned int max_segments = 10;

std::vector<wykobi::segment<T,2>> segment_list;

generate_random_segments
   (
    0.0, 0.0, width - 10.0, height - 10.0,
    max_segments,
    std::back_inserter(segment_list)
   );

wykobi::circle<T> circle;

wykobi::generate_random_object<T>(0.0,0.0,width - 1.0,height - 1.0,circle);

graphic.draw(circle);

for (std::size_t i = 0; i < segment_list.size(); ++i)
{
   if (!wykobi::intersect(segment_list[i],circle))
   {
      wykobi::point2d<T> closest_point_on_segment =
                  wykobi::closest_point_on_segment_from_point
                     (segment_list[i], wykobi::make_point(circle));

      wykobi::point2d<T> closest_point_on_circle  =
                  wykobi::closest_point_on_circle_from_point
                     (circle, closest_point_on_segment);

      graphic.draw(segment_list[i]);

      graphic.draw(
         wykobi::make_segment
            (closest_point_on_segment, closest_point_on_circle));

      graphic.draw_circle(closest_point_on_segment,4);
      graphic.draw_circle(closest_point_on_circle ,4);
   }
   else
   {
      graphic.draw(segment_list[i]);

      graphic.draw_circle(segment_list[i][0],3);
      graphic.draw_circle(segment_list[i][1],3);
   }
}
     

Closest Point On Circle From Another Circle

C++ Wykobi Computational Geometry Library Closest Point On Circle From Another Circle - Copyright Arash Partow

wykobi::circle<T> circle_a = wykobi::make_circle<T>(..., ..., ...);

wykobi::circle<T> circle_b = wykobi::make_circle<T>(..., ..., ...);

wykobi::point2d<T> closest_point_on_circle_a =
                     wykobi::closest_point_on_circle_from_circle(circle_a, circle_b);

wykobi::point2d<T> closest_point_on_circle_b =
                     wykobi::closest_point_on_circle_from_circle(circle_b, circle_a);
     

Invert A Circle Across Another Circle

C++ Wykobi Computational Geometry Library Invert A Circle Across Another Circle - Copyright Arash Partow

wykobi::circle<T> circle_a = wykobi::make_circle<T>(0.0, 0.0, 120.0);

wykobi::circle<T> circle_b = wykobi::make_circle<T>(180.0, 140.0, 60.0);

wykobi::circle<T> circle_b_inverted =
                     wykobi::invert_circle_across_circle(circle_b, circle_a);
     

Mirroring Of Objects About An Arbitrary Axis

C++ Wykobi Computational Geometry Library Mirroring Of Objects About An Arbitrary Axis - Copyright Arash Partow C++ Wykobi Computational Geometry Library Mirroring Of Objects About An Arbitrary Axis - Copyright Arash Partow

wykobi::line<T,2> mirror_axis = wykobi::make_line<T>(...);

wykobi::triangle<T,2> triangle = wykobi::make_triangle<T>(...);

wykobi::circle<T> circle = wykobi::make_circle<T>(...);

wykobi::triangle<T,2> mirrored_triangle = wykobi::mirror(triangle,mirror_axis);

wykobi::circle<T> mirrored_circle = wykobi::mirror(circle,mirror_axis);
     

Various Other Triangle And Circle Constructions



Simple Examples

The Orientation Predicate

In the world of computational geometry there are several predicates that form the basis of some of the most complex calculations known. One of the most important predicates is called the orientation predicate.

The question this predicate tries to answer is: Given two points P0 and P1 that compose a directed line formed by the vector V (P1 - P0), and a third point P2, on what side of the directed line does the point P2 reside?

C++ Wykobi Computational Geometry Library The Orientation Predicate - Copyright Arash Partow

The concept of a directed line leads to the definition of three unique spaces. The first two represent the set of points to the left and right of the directed line whereas the third is the set of points that comprise the directed line. Another way to view the problem is to assume one is standing on P0 and looking towards P1, the question as defined before is on what side does P2 reside?

The diagram below depicts the point P2 as being on the left-hand side of the defined directed line.

C++ Wykobi Computational Geometry Library The Orientation Predicate - Copyright Arash Partow

The diagram below depicts all three possibilities of the orientation predicate. Wykobi provides an implementation of the orientation routine with overloads for line-segments and lines (directed-line representation). The routine returns one of either values: RightHandSide, LeftHandSide or CollinearOrientation

C++ Wykobi Computational Geometry Library The Orientation Predicate - Copyright Arash Partow

wykobi::point2d<T> point_0 = wykobi::make_point<T>(...);
wykobi::point2d<T> point_1 = wykobi::make_point<T>(...);
wykobi::point2d<T> point_2 = wykobi::make_point<T>(...);

switch(wykobi::orientation(point_0, point_1, point_2))
{
   case wykobi::RightHandSide        : ... break;
   case wykobi::LeftHandSide         : ... break;
   case wykobi::CollinearOrientation : ... break;
}
     

Note: The real underlying computation that occurs within the orientation predicate is called the signed area of a triangle or the 3-point determinant. Specifically this is twice the area of the triangle defined by the points P0, P1, P2, or the area of the parallelogram created by mirroring the point P2 about the axis defined by the vector (P1 - P0)

C++ Wykobi Computational Geometry Library Signed Area Of Triangle - Copyright Arash Partow

The orientation predicate can be extended to 3D where by the testing object is a plane rather than a directed-line constructed from three points, and where by a fourth point is queried as being either above, below or coplanar to the defined plane.

In 3D the signed area of the triangle is equivalent to the signed area of the tetrahedron. There has been extensive research done on how best to compute the orientation predicate. The sign of the area is the most important aspect of the computation and getting that right using finite precision arithmetic seems to be an ongoing research topic.

Segment Intersection Via The Orientation Predicate

The orientation predicate can be used to solve some very interesting problems. Below we have two line-segments, S0 and S1, comprised of point pairs (P0,P1) and (Q0,Q1) respectively. The question we would like to answer is whether or not the two line-segments intersect with each other.

C++ Wykobi Computational Geometry Library Segment Intersection Via The Orientation Predicate - Copyright Arash Partow

By applying the orientation rule, with the directed-line constructed from S1 as D0 = Q0 - Q1, and using the end points P0 and P1 of the line-segment S0, we discover a very interesting property, that is if S0 intersects D0 then the orientations for the end points of S0 will not be equivalent.

C++ Wykobi Computational Geometry Library Segment Intersection Via The Orientation Predicate - Copyright Arash Partow

As demonstrated in the diagram below in the event the given line-segments do not intersect the computed orientations to the directed-lines D0 and D1 will be equivalent.

C++ Wykobi Computational Geometry Library Segment Intersection Via The Orientation Predicate - Copyright Arash Partow

There is a caveat to this rule and that is if the either one or both of the points are collinear to their respective test directed-line and exist within the axis-aligned bounding box defined by the end-points used to construct said directed-line, then the line-segments intersect.

C++ Wykobi Computational Geometry Library Segment Intersection Via The Orientation Predicate - Copyright Arash Partow

Further more the situation below shows the need for the above described operation to occur for both segments. An orientation test for the end-points of S0 against the directed-line D0 constructed from S1 and an orientation test for the end-points of S1 against the directed-line D1 constructed from S0.

C++ Wykobi Computational Geometry Library Segment Intersection Via The Orientation Predicate - Copyright Arash Partow

Wykobi provides a routine that does the above namely simple_intersect, The algorithm's pseudo-code is as follows:

if (orientation(Q0,Q1,P0) to orientation(Q0,Q1,P1) is either not equal or collinear)
   and
   (orientation(P0,P1,Q0) to orientation(P0,P1,Q1) is either not equal or collinear) then
begin
  return segments intersect.
end
     

Note: There are some issues relating to this method, initially the algorithm only returns the boolean state of intersection between the provided segments, not the intersection point itself. Also the issues relating to numerical stability of the orientation predicate may cause this routine to provide inconsistent results when given the same input but in different orders - this only occurs when very large values and small values are mixed and is not necessarily the algorithm's problem but more so due to the use of finite precision numbers which are generally the main source of problems when performing numerical computations - after buggy code of course.

Point In Convex Polygon Via The Orientation Predicate

Following on from the previous theme of using the orientation predicate, we have another problem at hand, given a convex polygon and point, determine if the point is within the polygon.

C++ Wykobi Computational Geometry Library Point In Convex Polygon Via The Orientation Predicate - Copyright Arash Partow

As before another interesting property is discovered when using the orientation predicate, and that is if one were to traverse the edges of the convex polygon in a consistent order computing the orientation between the given point and the directed-line constructed from the edge at-hand, then one could say the point exists within the convex polygon if and only if all the orientations are equivalent.

C++ Wykobi Computational Geometry Library Point In Convex Polygon Via The Orientation Predicate - Copyright Arash Partow

The diagram below demonstrates that edges |P1,P0|, |P0,P4|, |P4,P3| and |P2,P1| all have the same orientation but the edges |P4,P3| and |P3,P2| have differing orientations to the point Q0. From this it is determined that the point Q0 is outside the convex polygon.

C++ Wykobi Computational Geometry Library Point In Convex Polygon Via The Orientation Predicate - Copyright Arash Partow

Again as before there is a caveat to this rule and that is if any of the orientations are collinear then that orientation can be considered the same as the others if and only if the point is within the axis aligned bounding box of the edge at-hand. This principle can also be used to easily determine if a polygon is convex or not. Wykobi provides a set of routines that use the above mentioned principle in various ways, they include point_in_convex_polygon, convex_quadix and is_convex_polygon.

The Point Of Reflection

Ray-tracing processes primarily concern themselves with shooting out rays from a point of view and tracing the rays through a scene as they intersect, diffuse and reflect various surfaces within the scene. Another problem that arises from this area is the definition of points of reflection upon surfaces that satisfy a constraint, for example a billiard table simulation may require the solution to determining the point on the side of a table where the white ball must hit so as to reflect off-of and hit a target ball. Another question that could be asked is if the target point is visible from the source point via a reflection from an object within the scene.

In the diagram below we have two points of interest a source and destination point, blue and green respectively, and a mirror-like object represented as a black line-segment. Lets assume this object provides totally elastic collisions and energy-loss free reflections from object or light interactions.

The question then is where abouts on the reflective line-segment should a ray from the blue source object be targeted at so as to reflect (angle of incidence is equal to angle of reflection) and hit the green target object?

It turns out there is a very simple geometric construction that provides a closed-form solution to this problem. The first step is to extend perpendiculars from the target and source points onto the line extension of the reflective line-segment. Or in other words determine the closest points on the line extension from the target and source points.

C++ Wykobi Computational Geometry Library The Point Of Reflection - Copyright Arash Partow

The next step is to extend line-segments from the target and source points to the opposite point's perpendicular extensions. These two line segments should result in an intersection point. At this point we extend a perpendicular from the intersection point onto the line extension of the reflective line-segment.

C++ Wykobi Computational Geometry Library The Point Of Reflection - Copyright Arash Partow

If the intersection point's perpendicular extension is upon the line- segment (not the line extension), then that point is said to be the point of reflection, the red point in the diagram below. Casting a ray from the blue point towards the red point will cause the ray to reflect at that point towards to green point.

C++ Wykobi Computational Geometry Library The Point Of Reflection - Copyright Arash Partow

Wykobi provides a routine specifically for this kind of computation point_of_reflection

wykobi::segment<T,2> reflection_object = wykobi::make_line<T>(...);
wykobi::point2d<T> blue_point = wykobi::make_point<T>(...);
wykobi::point2d<T> green_point = wykobi::make_point<T>(...);
wykobi::point2d<T> reflection_point;

if (point_of_reflection(reflection_object, blue_point, green_point, reflection_point))
{
   ...
}
     

Note: It is assumed that both the target and source points are of the same orientation with regards to the reflective line-segment. Furthermore there are some very interesting triangle similarity properties of the above mentioned construction. Can you determine what they are?

Bisecting An Angle (The Other Method...)

Previously it was shown that computing the bisector of an angle with Wykobi can be done very easily. The basis of the computation was to exploit certain angle and side similarities to deduce the bisector. Now we have a similar geometric construction problem but with the following restrictions, Assume you are given an angle constructed from two lines as shown below and only using a compass (not a protractor) and a non-etched ruler you are to determine the bisector for the specified angle |ABC|.

C++ Wykobi Computational Geometry Library Bisecting An Angle - Copyright Arash Partow

We initially begin by drawing a circle centered at B with sufficient radius. We shall call the intersection points inwards of the angle |ABC| with lines |AB| and |CB| and the circle, N0 and N1 respectively. Furthermore we draw two circles with centers at N0 and N1 with radii such that they intersect each other at least at one other point.

C++ Wykobi Computational Geometry Library Bisecting An Angle - Copyright Arash Partow

In the diagram below it so happens that the two circles centered at N0 and N1 intersect each other at two locations I0 and I1. From this we determine the line that passes through B, I0 and I1 is the line which bisects the angle |ABC|.

C++ Wykobi Computational Geometry Library Bisecting An Angle - Copyright Arash Partow

The above mentioned computation can be easily achieved using Wykobi as follows:

wykobi::point2d<T> A = wykobi::make_point<T>(...,...);
wykobi::point2d<T> B = wykobi::make_point<T>(...,...);
wykobi::point2d<T> C = wykobi::make_point<T>(...,...);

wykobi::segment<T,2> AB = wykobi::make_segment<T>(A,B);
wykobi::segment<T,2> CB = wykobi::make_segment<T>(C,B);

T B_radius = std::min(wykobi::distance(AB), wykobi::distance(CB)) / T(2.0);

std::vector<wykobi::point2d<T>> n;

wykobi::intersection_point(AB,wykobi::make_circle(B,B_radius),n);
wykobi::intersection_point(CB,wykobi::make_circle(B,B_radius),n);

if (n.size() != 2)
{
   return; //error - not the right number of intersections
}

wykobi::point2d<T> i0;
wykobi::point2d<T> i1;

T N_radius = wykobi::distance(n[0], n[1]) * T(3.0/4.0);

wykobi::intersection_point
        (
         wykobi::make_circle(n[0],N_radius),
         wykobi::make_circle(n[1],N_radius),
         i0,i1
        );

wykobi::line<T,2> bisector1 = wykobi::make_line(B,i0);
wykobi::line<T,2> bisector2 = wykobi::make_line(B,i1);
     

Smoothing Of Sharp Corners

There are many reasons why one would need to smooth-out or unsharpen the corner of an object. Below we'll describe a very simple method to non-uniformly add superfluous edges around a corner.

C++ Wykobi Computational Geometry Library Smoothing Of Sharp Corners - Copyright Arash Partow

Initially we project the end points of each edge outwards by length K in a direction perpendicular to the edge being processed. The new points will generate one new edge (depicted in yellow).

C++ Wykobi Computational Geometry Library Smoothing Of Sharp Corners - Copyright Arash Partow

A third edge is generated by using the projected points that arise from the corner (or common source), this edge is inserted between the two previously generated edges.

C++ Wykobi Computational Geometry Library Smoothing Of Sharp Corners - Copyright Arash Partow

The process is repeated over again with the new edges generating a new set of edges that are then fed back into the algorithm, resulting in a some-what smoothed-out corner. The following is a solution using Wykobi to the above mentioned process:

template <typename T>
class smooth_corners
{
public:
   smooth_corners(const T& expansion_length,
                  const wykobi::polygon<T,2> input_convex_polygon,
                  wykobi::polygon<T,2>& output_convex_polygon)
   {
      wykobi::segment<T,2> edge = wykobi::edge(input_polygon,0);

      T inverter = T(std::abs(expansion_length));

      wykobi::point2d<T> test_point =
                  wykobi::segment_mid_point(edge) +
                  wykobi::normalize(perpendicular(edge[1] - edge[0]));

      if (point_in_polygon(test_point, input_convex_polygon))
      {
         inverter = T(-expansion_length);
      }

      for (std::size_t i = 0; i < input_convex_polygon.size(); ++i)
      {
         wykobi::segment<T,2> edge = wykobi::edge(input_convex_polygon,i);

         wykobi::vector2d<T> v =
            wykobi::normalize(wykobi::perpendicular(edge[1] - edge[0])) * inverter;

         output_convex_polygon.push_back(edge[0] + v);
         output_convex_polygon.push_back(edge[1] + v);
      }
   }
};
     

The diagram below demonstrates how a triangle converted to a polygon type has had its sharp corners smoothed-out. The size of the new boundary being larger is purely for demonstration purposes. In practice the new boundary would be nearly superimposed on top of the original.

C++ Wykobi Computational Geometry Library Smoothing Of Sharp Corners - Copyright Arash Partow

The above is a very brief overview of only some of the computational geometry algorithms and processes that are available in the Wykobi C++ computational geometry library. There is plenty more out there...



Some Notes On Usage

Usage - Type

The above examples demonstrate the generality/genericity of the Wykobi library routines with regards to numerical type. However this may be somewhat misleading as not all types can provide the necessary precision required to obtain satisfactory results from the routines. Consequently one must approach problems with at least some information relating to bounds and required precision and efficiency. This is a problem that a library can never solve but rather provide the end developer the tools and options by which they can make the necessary decisions to solve their problem.

Usage - Robustness

Wykobi's routines make assumptions about the validity of types being passed to them. Typically these assumptions are manifest by the lack of assertions and type degeneracy checks within the routines themselves. This is done so as to provide the most optimal implementation of the routine without causing the routine to fail, and to leave the details of type validation to the end user as they see fit.

Theoretically each of the routines could verify object degeneracy (e.g: does the triangle have 3 unique points), then type value validity (e.g: does the value lie within some plausible range) but the unnecessary overhead one must endure would make using the routines quite inefficient. As an example consider what the circumcircle of a triangle that has all 3 of its points being collinear would look like, how would you write the routine to be robust, when would you need to have a robust routine like that?

Usage - Correctness

Typical usage patterns involve chaining the output of one routine as the input of another so on and so forth. Not knowing the exact nature of the computation will lead to an aggregation of errors that might result in the final outcome being highly erroneous and subsequently unusable. An example of this is as follows, assume you have an arm of length x with one end statically positioned at the origin, requests for rotations of the arm come through, in degree form, +1, -13.5, +290 etc.

C++ Wykobi Computational Geometry Library Some Notes On Usage - Copyright Arash Partow



Wykobi .NET Demonstration

A simple .NET WinForms based application is available from the Wykobi downloads page that demonstrates with graphical visualizations all of the above mentioned computational geometry routines and processes.

C++ Wykobi Computational Geometry Library .NET Demonstration App - Copyright Arash Partow